graph4nlp.evaluation¶
Evaluation Metrics¶
-
class
graph4nlp.evaluation.
BLEU
(n_grams, verbose=0)¶ The BLEU evaluation metric class.
- Parameters
n_grams (list[int]) – The BLEU’s n_gram parameter. The results will be returned according to the
n_grams
one-by-one.verbose (int, default = 0) – The log indicator. If set to 0, it will output no logs.
Methods
calculate_scores
(ground_truth, predict)The BLEU calculation function. It will compute the BLEU scores.
-
calculate_scores
(ground_truth, predict)¶ The BLEU calculation function. It will compute the BLEU scores.
- Parameters
ground_truth (list[string]) – The ground truth (correct) target values. It is a list of strings.
predict (list[string]) – The predicted target values. It is a list of strings.
- Returns
score (list[float]) – The list contains BLEU_n results according to
n_grams
.scores (list[list[float]]) – The specific results for each needed BLEU_n metric.
-
class
graph4nlp.evaluation.
CIDEr
(df)¶ The CIDEr evaluation metric class.
- Parameters
df (string) – Parameter indicating document frequency.
Methods
calculate_scores
(ground_truth, predict)The CIDEr calculation function. It will compute the CIDEr scores.
-
calculate_scores
(ground_truth, predict)¶ The CIDEr calculation function. It will compute the CIDEr scores.
- Parameters
ground_truth (list[string]) – The ground truth (correct) target values. It is a list of strings.
predict (list[string]) – The predicted target values. It is a list of strings.
- Returns
score (float) – The CIDEr value.
scores (list[float]) – The specific results for CIDEr metric.
-
class
graph4nlp.evaluation.
METEOR
¶ The METEOR evaluation metric class.
- Parameters
rubric: (.) – Methods:
autosummary:: (.) –
- toctree
calculate_scores
. – !! processed by numpydoc !!
-
calculate_scores
(ground_truth, predict)¶ The METEOR calculation function. It will compute the METEOR scores.
- Parameters
ground_truth (list[string]) – The ground truth (correct) target values. It is a list of strings.
predict (list[string]) – The predicted target values. It is a list of strings.
- Returns
score (float) – The METEOR value.
scores (list[float]) – The specific results for METEOR metric.
-
class
graph4nlp.evaluation.
ROUGE
¶ The METEOR evaluation metric class.
- Parameters
rubric: (.) – Methods:
autosummary:: (.) –
- toctree
calculate_scores
. – !! processed by numpydoc !!
-
calculate_scores
(ground_truth, predict)¶ The METEOR calculation function. It will compute the METEOR scores.
- Parameters
ground_truth (list[string]) – The ground truth (correct) target values. It is a list of strings.
predict (list[string]) – The predicted target values. It is a list of strings.
- Returns
score (float) – The METEOR value.
scores (list[float]) – The specific results for METEOR metric.